-4.9t^2+40t+50=0

Simple and best practice solution for -4.9t^2+40t+50=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4.9t^2+40t+50=0 equation:



-4.9t^2+40t+50=0
a = -4.9; b = 40; c = +50;
Δ = b2-4ac
Δ = 402-4·(-4.9)·50
Δ = 2580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2580}=\sqrt{4*645}=\sqrt{4}*\sqrt{645}=2\sqrt{645}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{645}}{2*-4.9}=\frac{-40-2\sqrt{645}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{645}}{2*-4.9}=\frac{-40+2\sqrt{645}}{-9.8} $

See similar equations:

| 3x+4+2x=10x-11 | | 20k=-240 | | -7+7x-2=6+5x-3 | | 3x+4-6x=-4x+12+5x | | v-(-7)=9 | | 8x+10-6x=-4x+18+2x | | 7(t-2)=91 | | 8x+6∘=4x+38∘ | | -11=6+k | | 4y^2-8y-32=0 | | 4y^2-8y+32=0 | | 2x^2+7x-12=3 | | 6x+5-5x=4x+14 | | 0=8+v | | y=12(2)-4 | | 3(r+8)=78 | | 1x+3=2×-5 | | -4y^2+8y+32=0 | | 5=a-47/6 | | 153=-9p | | 4y^2+8y+32=0 | | 9x+5-6x=6x+17 | | 24+6m=78 | | 9x+8-6x=-4x+16+3x | | -12+n=-13 | | 4x^2+28x-28=0 | | 6x+10=-6+4x | | -6=-17-m | | 6^2-5(6)-6-x(6-6)^2=0 | | -9-3x=-6-6x | | 14=a-(-3) | | j+27/7=7 |

Equations solver categories